skip to main content


Search for: All records

Creators/Authors contains: "Lunt, Daniel J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Despite tectonic conditions and atmospheric CO 2 levels ( pCO 2 ) similar to those of present-day, geological reconstructions from the mid-Pliocene (3.3-3.0 Ma) document high lake levels in the Sahel and mesic conditions in subtropical Eurasia, suggesting drastic reorganizations of subtropical terrestrial hydroclimate during this interval. Here, using a compilation of proxy data and multi-model paleoclimate simulations, we show that the mid-Pliocene hydroclimate state is not driven by direct CO 2 radiative forcing but by a loss of northern high-latitude ice sheets and continental greening. These ice sheet and vegetation changes are long-term Earth system feedbacks to elevated pCO 2 . Further, the moist conditions in the Sahel and subtropical Eurasia during the mid-Pliocene are a product of enhanced tropospheric humidity and a stationary wave response to the surface warming pattern, which varies strongly with land cover changes. These findings highlight the potential for amplified terrestrial hydroclimate responses over long timescales to a sustained CO 2 forcing. 
    more » « less
  2. Abstract. Since the middle Miocene (15 Ma, million years ago), the Earth's climate has undergone a long-term cooling trend, characterised by a reduction in ocean temperatures of up to 7–8 ∘C. The causes of this cooling are primarily thought to be due to tectonic plate movements driving changes in large-scale ocean circulation patterns, and hence heat redistribution, in conjunction with a drop in atmospheric greenhouse gas forcing (and attendant ice-sheet growth and feedback). In this study, we assess the potential to constrain the evolving patterns of global ocean circulation and cooling over the last 15 Ma by assimilating a variety of marine sediment proxy data in an Earth system model. We do this by first compiling surface and benthic ocean temperature and benthic carbon-13 (δ13C) data in a series of seven time slices spaced at approximately 2.5 Myr intervals. We then pair this with a corresponding series of tectonic and climate boundary condition reconstructions in the cGENIE (“muffin” release) Earth system model, including alternative possibilities for an open vs. closed Central American Seaway (CAS) from 10 Ma onwards. In the cGENIE model, we explore uncertainty in greenhouse gas forcing and the magnitude of North Pacific to North Atlantic salinity flux adjustment required in the model to create an Atlantic Meridional Overturning Circulation (AMOC) of a specific strength, via a series of 12 (one for each tectonic reconstruction) 2D parameter ensembles. Each ensemble member is then tested against the observed global temperature and benthic δ13C patterns. We identify that a relatively high CO2 equivalent forcing of 1120 ppm is required at 15 Ma in cGENIE to reproduce proxy temperature estimates in the model, noting that this CO2 forcing is dependent on the cGENIE model's climate sensitivity and that it incorporates the effects of all greenhouse gases. We find that reproducing the observed long-term cooling trend requires a progressively declining greenhouse gas forcing in the model. In parallel to this, the strength of the AMOC increases with time despite a reduction in the salinity of the surface North Atlantic over the cooling period, attributable to falling intensity of the hydrological cycle and to lowering polar temperatures, both caused by CO2-driven global cooling. We also find that a closed CAS from 10 Ma to present shows better agreement between benthic δ13C patterns and our particular series of model configurations and data. A final outcome of our analysis is a pronounced ca. 1.5 ‰ decline occurring in atmospheric (and ca. 1 ‰ ocean surface) δ13C that could be used to inform future δ13C-based proxy reconstructions. 
    more » « less
  3. null (Ed.)
    As the world warms, there is a profound need to improve projections of climate change. Although the latest Earth system models offer an unprecedented number of features, fundamental uncertainties continue to cloud our view of the future. Past climates provide the only opportunity to observe how the Earth system responds to high carbon dioxide, underlining a fundamental role for paleoclimatology in constraining future climate change. Here, we review the relevancy of paleoclimate information for climate prediction and discuss the prospects for emerging methodologies to further insights gained from past climates. Advances in proxy methods and interpretations pave the way for the use of past climates for model evaluation—a practice that we argue should be widely adopted. 
    more » « less
  4. null (Ed.)
    Abstract. Accurate estimates of past global mean surface temperature (GMST) help tocontextualise future climate change and are required to estimate thesensitivity of the climate system to CO2 forcing through Earth's history.Previous GMST estimates for the latest Paleocene and early Eocene(∼57 to 48 million years ago) span a wide range(∼9 to 23 ∘C higher than pre-industrial) andprevent an accurate assessment of climate sensitivity during this extremegreenhouse climate interval. Using the most recent data compilations, weemploy a multi-method experimental framework to calculate GMST during thethree DeepMIP target intervals: (1) the latest Paleocene (∼57 Ma), (2) the Paleocene–Eocene Thermal Maximum (PETM; 56 Ma), and (3) the earlyEocene Climatic Optimum (EECO; 53.3 to 49.1 Ma). Using six differentmethodologies, we find that the average GMST estimate (66 % confidence)during the latest Paleocene, PETM, and EECO was 26.3 ∘C (22.3 to28.3 ∘C), 31.6 ∘C (27.2 to 34.5 ∘C), and27.0 ∘C (23.2 to 29.7 ∘C), respectively. GMST estimatesfrom the EECO are ∼10 to 16 ∘C warmer thanpre-industrial, higher than the estimate given by the Intergovernmental Panel on Climate Change (IPCC) 5thAssessment Report (9 to 14 ∘C higher than pre-industrial).Leveraging the large “signal” associated with these extreme warm climates,we combine estimates of GMST and CO2 from the latest Paleocene, PETM,and EECO to calculate gross estimates of the average climate sensitivitybetween the early Paleogene and today. We demonstrate that “bulk”equilibrium climate sensitivity (ECS; 66 % confidence) during the latestPaleocene, PETM, and EECO is 4.5 ∘C (2.4 to 6.8 ∘C),3.6 ∘C (2.3 to 4.7 ∘C), and 3.1 ∘C (1.8 to4.4 ∘C) per doubling of CO2. These values are generallysimilar to those assessed by the IPCC (1.5 to 4.5 ∘C per doublingCO2) but appear incompatible with low ECS values (<1.5 perdoubling CO2). 
    more » « less
  5. Abstract

    Earth's hydrological cycle is expected to intensify in response to global warming, with a “wet‐gets‐wetter, dry‐gets‐drier” response anticipated over the ocean. Subtropical regions (∼15°–30°N/S) are predicted to become drier, yet proxy evidence from past warm climates suggests these regions may be characterized by wetter conditions. Here we use an integrated data‐modeling approach to reconstruct global and zonal‐mean rainfall patterns during the early Eocene (∼56–48 million years ago). The Deep‐Time Model Intercomparison Project (DeepMIP) model ensemble indicates that the mid‐ (30°–60°N/S) and high‐latitudes (>60°N/S) are characterized by a thermodynamically dominated hydrological response to warming and overall wetter conditions. The tropical band (0°–15°N/S) is also characterized by wetter conditions, with several DeepMIP models simulating narrowing of the Inter‐Tropical Convergence Zone. However, the latter is not evident from the proxy data. The subtropics are characterized by negative precipitation‐evaporation anomalies (i.e., drier conditions) in the DeepMIP models, but there is surprisingly large inter‐model variability in mean annual precipitation (MAP). Intriguingly, we find that models with weaker meridional temperature gradients (e.g., CESM, GFDL) are characterized by a reduction in subtropical moisture divergence, leading to an increase in MAP. These model simulations agree more closely with our new proxy‐derived precipitation reconstructions and other key climate metrics and imply that the early Eocene was characterized by reduced subtropical moisture divergence. If the meridional temperature gradient was even weaker than suggested by those DeepMIP models, circulation‐induced changes may have outcompeted thermodynamic changes, leading to wetter subtropics. This highlights the importance of accurately reconstructing zonal temperature gradients when reconstructing past rainfall patterns.

     
    more » « less
  6. null (Ed.)
    Abstract. The Pliocene epoch has great potential to improve ourunderstanding of the long-term climatic and environmental consequences of an atmospheric CO2 concentration near ∼400 parts permillion by volume. Here we present the large-scale features of Plioceneclimate as simulated by a new ensemble of climate models of varyingcomplexity and spatial resolution based on new reconstructions ofboundary conditions (the Pliocene Model Intercomparison Project Phase 2;PlioMIP2). As a global annual average, modelled surface air temperaturesincrease by between 1.7 and 5.2 ∘C relative to the pre-industrial erawith a multi-model mean value of 3.2 ∘C. Annual mean totalprecipitation rates increase by 7 % (range: 2 %–13 %). On average, surface air temperature (SAT) increases by 4.3 ∘C over land and 2.8 ∘C over the oceans. There is a clear pattern of polar amplification with warming polewards of 60∘ N and 60∘ S exceeding the global mean warming by a factor of 2.3. In the Atlantic and Pacific oceans, meridional temperature gradients are reduced, while tropical zonal gradients remain largely unchanged. There is a statistically significant relationship between a model's climate response associated with a doubling in CO2 (equilibrium climate sensitivity; ECS) and its simulated Pliocene surface temperature response. The mean ensemble Earth system response to a doubling of CO2 (including ice sheet feedbacks) is 67 % greater than ECS; this is larger than the increase of 47 % obtained from the PlioMIP1 ensemble. Proxy-derived estimates of Pliocene sea surface temperatures are used to assess model estimates of ECS and give an ECS range of 2.6–4.8 ∘C. This result is in general accord with the ECS range presented by previous Intergovernmental Panel on Climate Change (IPCC) Assessment Reports. 
    more » « less